Lower Bounds on Stabbing Lines in 3-space

نویسنده

  • Marco Pellegrini
چکیده

A stabbing line for a set of convex polyhedra is extremal if it passes through four edges and is tangent to the polyhedra containing those edges. In this paper we present three constructions of convex polyhedra with many extremal lines. The rst construction shows (n 2) extremal stabbing lines constrained to meet two skew lines. The second shows (n 4) extremal lines which are tangent to two polyhedra. The third shows (n 3) extremal stabbing lines. This last lower bound almost matches the best known upper bound. These lower bounds are relevant for the design and analysis of algorithms constructing the space of stabbing lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Geometric Structures of Low Stabbing Number in the Plane∗

The stabbing number of a geometric structure in IR with respect to lines is the maximum number of times any line stabs (intersects) the structure. We present algorithms for constructing popular geometric data structures with small stabbing number and for computing lower bounds on an optimal solution. We evaluate our methods experimentally.

متن کامل

Fixed-parameter tractability and lower bounds for stabbing problems

We study the following general stabbing problem from a parameterized complexity point of view: Given a set S of n translates of an object in R, find a set of k lines with the property that every object in S is ”stabbed” (intersected) by at least one line. We show that when S consists of axis-parallel unit squares in R the (decision) problem of stabbing S with axis-parallel lines is W[1]-hard wi...

متن کامل

On stabbing triangles by lines in 3-space

We give an example of a set P of 3n points in R3 such that, for any partition of P into triples, there exists a line stabbing Ω( √ n) of the triangles determined by the triples.

متن کامل

CS - 1993 - 09 On Stabbing Lines for Convex Polyhedra in 3

Given a set B of convex polyhedra in R 3 , a linè in R 3 is called a stabbing line for B if it intersects all polyhedra of B. This paper presents an upper bound of O(n 3 logn) on the complexity of the space of stabbing lines for B. We solve a more general problem which counts the number of faces in a set of convex polyhedra, which are implicitly deened by a set of half-spaces and an arrangement...

متن کامل

Fast Stabbing of Boxes in High Dimensions

We present in this paper a simple yet e cient algorithm for stabbing a set S of n axisparallel boxes in d-dimensional space with c(S) points in output-sensitive time O(dn log c(S)) and linear space. Let c∗(S) and b∗(S) be, respectively, the minimum number of points required to stab S and the maximum number of pairwise disjoint boxes of S. We prove that b(S)6c(S)6c(S)6b(S)(1+log2 b ∗(S))d−1. Sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1993